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This paper gives (in a suitable approximation) the Poynting vector of a 
plane electromagnetic wave diffracted by the gravitational field of a 
Schwarzschild black hole. The relation between the approximation proce- 
dure and the concept of rays is established. The main results are as follows: 
(1) On the focal line an extreme amplification of intensity takes place. 
(2) In the whole space off this focal line a double image is to be seen. 
(3) Rays having revolved around the black hole repeatedly give small cor- 
rections only. (4) The phase differences (transit-time differences) along the 
different rays are computed. 

1. INTRODUCTION 

In a preceding paper (Herlt and Stephani, 1976), from now on referred 
to as I, we discussed in detail the gravitational lens effect of a star large 
compared to its Schwarzschild radius. Here we shall deal with the image of a 
very distant star produced by a black hole. The main difference from the 
large star case is that, in the field of a black hole, interference can take place 
in the whole space (there is no shadow), and that, owing to rays that re- 
peatedly revolve around the center, ghost images may appear. 

We start with a short account of formulas derived in I, which enable us 
to give the components of the Poynting vector in terms of the Debye potential 
P and to evaluate P by the method of stationary phase. The connection 
between this method and the concept of  rays is discussed in Sections 3 and 4. 
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In Section 5 the shape of the image due to the two main rays is given, and in 
Section 6 the corrections due to the secondary rays (rays having revolved 
around the black hole several times) are discussed. Section 7 deals with the 
transit-time differences along the different rays. We finish with some remarks 
on possible observations. 

2. N O T A T I O N S  AND GENERAL EXPRESSION FOR T H E  

P O Y N T I N G  VECTOR OF THE DIFFRACTED WAVE 

As shown in I, the electromagnetic field in a Schwarzschild background 
that corresponds to an incident plane wave can be given in terms of the 
function P:  

P(r, v ~) = ~ ( -1 )" (2n  + 1)e~O~(l12_ln2>[R~(r ) + ROUt(r)]Pl(co s ~) 
,=1 2c~ n + 1) 

(2.1) 

Here the p 1  are the Legendre functions, the R,(r)  are solutions of  the radial 
equation 

dr--- ~ + ~o 2 1 - a2 7 R,  = 0 (2.2) 

v - = r + I n ( r -  1), a 2 = - n ( n +  1)/~ 2 

~o is the frequency of the wave, and r and u ~ are spherical coordinates chosen 
as in Figure 1. All distances are measured in units of  the Schwarzschild 
radius; so the horizon is at r = 1, and co is 2~- times the Schwarzschild radius 
divided by the (flat space) wave length. 

From now on we confine attention to the physically most interesting case 
~o >> 1 (oJ = 101~ for visible light and a black hole of  about one solar mass) 

BLac 

--= Hote 

Fig. 1. Coordinate systems. 
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and r >> 1 (observer on earth,  far  away f rom the nearest  black hole). We then 
can use the W K B  method  to approx imate  the radial  functions by 

e - t ~ ( v  + r )  

Rl~n(r) = [1 -- a2(r -- 1)/rS] T M  

(2.3) 
efOXv + T - W )  

ROUt(r ~ 
n ~ ~ = [1 -- a2(r -- 1)/P] 1/4 

Rr ~ being zero for  a 2 < 27/4, with 

T(r,n)=f~176 ~ ] ]~_ldrr 
a arcsin (a/r) + (1 - aZ/r91/2 - r + 1 

- In 2 + In [1 + (1 - a2/r2) 1/2] (2.4) 

a n d  

(1 
+ 2 r o  + 2 1 n ( r o -  1 ) -  

a 2 r -  l~l'2] r 
---7r j ~ _  l dr 

2~ 
(2.5) 

r o  3 a 2  

r o -  l -  

Tak ing  the well-known asymptot ic  representat ion o f  the Legcndre functions 
and neglecting the R~ n, which would contr ibute only for  zr/2 ~< t9 ~< zr, we 
finally obtain  

oo e iO~(l /2  - In  2) e,O~(v + T - W) 

P(r, 8) e t n . 2 m g  

/ '  oJ2(2#n sin o~) 1/2 [1 ~ : ~)/p]i/4 n + 1 / 2  = (w12)3(3)112 

x { d  t<'~ + 1:2)~- 3 . m  _ e-*t<'~ + l / 2 )e -  3~,m} ( 2 . 6 )  

where m is an arbi t rary integer. 
F r o m  (2.6) we can get the components  of  the Poynt ing vector  by 

comput ing  

0 (sin ~P)  

fi = sin ~ ~-~ 0v + i~,P (2.7) 

0P ~P 
3 =  - k o s i n v  ~ - - -  
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and substituting the result into 

1 R e ( 3 e _ , O , t ) R e ( [ ~ ( r _ � 8 9  ) 
S~ = r 2 sin 8 

(2.8) 

1 1} SD = ~ R e  (Be -t~t) R e  (r - �89 cotan 8 - f l e  - ~ t  

The equations (2.6)-(2.8) are valid for to >> 1, r >> 1, n sin 8 >> 1, 8 < 7r/2. 
On the axis 8 = 0 similar results can be obtained. 

3. M E T H O D  OF STATIONARY PHASE AND RAYS 

As in I, we evaluate the infinite sum (2.6) by replacing it by an integral 
over n and using the method of  stationary phase. The points n = no of  
stationary phase are obviously given by 

0S 0 
O--n = -~n (toT - toW + mr +. n8 + n2m~r) = 0 (3.1) 

This equation admits a simple interpretation in terms of geometrical optics. 
Because of  (3.1) the lines no = no(r, 8) = const fulfil 

OaT 
+ d8 + to-O--r-~-~ dr = 0 (3.2) 

or, taking the definition (2.4) of T(r, n), 

(dr]  
08] = -~ - r(r - 1) (3.3) 

On the other hand, the first integrals of  the null geodesics equation in the 
Schwarzschild metric are 

rz d8 r -  l dt 
-d~= B, - - - -  = dA 

(3.4) 
r -  1 [dr~2 J d 8 ~ 2  r -  1 (d t~  2 

r + rl(d-a) r \da!  = 0  

which yield 

dS!  = -~  r" - r(r - 1) (3.5) 

If we identify B2/A 2 with a z, equations (3.3) and (3.5) coincide. So we can 
state that the lines connecting points of  stationary phase of equal no are 
exactly the rays of  geometrical optics. There are exactly as many points of 
stationary phase that contribute to the wave field in a given point (r, 8) as 
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Z l  

Fig. 2. The different types (m, +) of rays outside a black hole. 

there are rays crossing this point. Moreover, the equivalence of (3.3) and (3.5) 
shows that the approximation procedure of  this paper is closely related to the 
usual short-wavelength approximation of wave optics. In the case of the 
Schwarzschild background it is well known that for an incident plane wave 
(parallel rays for r - +  0% v a = 7r) each point (r, v ~) is passed by an infinite 
number of  rays. These rays differ (see Figure 2) in their sense of  revolution 
(indicated by + ) and the number m /> 0 of  revolutions they have performed. 
Using the same notation to label the points of  stationary phase, we obtain 
from (2.6) 

e..(~/2-1~ 2) e-~,~/4 
P(r ,  u ~) = - ~o2(sin ~)1/2 

( elS(m'-) 

x [1 - a2(m, + ) ( r  - 1)/r3]ll4[no(m, + ) S " ( m ,  +)]l/z m=O 

etS(m, - ) 

--  [1 -- aZ(rn, - - ) (r  -- 1)/r3]lt'[no(m, - ) S " ( m ,  _)] l /z )  (3.6) 

where 

S ( m ,  + )  = o~T[r, no(m, +)] - oJW[no(m, +)1 + [no(m, +)  + �89 ~ + 2mzr] 

+ oJv + [no(m, +)  - m]zr -Y- ~r/4 (3.7) 

no(m, + )  are the solutions of  (3. l), and S" is the second derivation of S with 
respect to n. 

The derivatives of P that we need to get ~,/3, and 3 can be calculated 
(at least off the axis v ~ = 0) simply by taking the derivatives of the factors 
e ~s(m, ~), because only these derivatives contain a factor co. From (2.6) and 
(3.1) one gets 

r -  1 1/2 
_ _  = + "~ _ _ ]  eta(m, ~: ) 0 eiS(m,.) iw 1 - a2(m, _ ,  r3 ] 
Ov 

(3.8) 
- ~  e ~s(",~ = + io~a(m, + )e ~s~m.~ 
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4. N U M B E R  OF RAYS 

At first glance the change from (2.6) to (3.6) seems to be a rather doubtful 
success: We again have to deal with an infinite sum involving complicated 
functions. But a careful analysis shows that the contributions with large m 
are negligible. 

Because of (3.1) large values of m correspond to large values of 

e W Coo a dr 
oJ--~-~n = 2 Jro [r4 - a2r(r  - 1)]112' roa/ro - 1 =- a 2 (4.1) 

that is to values of r0 close to 3/2, where the quadric r ~ - a2r(r  - 1) has a 
double zero. In this region the elliptic integral (4.1) can be approximated by 

a w  1 + V5 
oJ e--n- = - 4  in ~ 2 In (ro - -~) + ~(ro  - }) + " "  

(4.2) 

n + �89 a =  [1 +~(ro . . . .  ] 
o~ = T 

Substituting (4.2) into (3.1) and neglecting oo(eT/en)  (which is of order r-1), 
the points of stationary phase with m > 1 are given by 

co3x/3 [ 2 182 e - ( 2 m + l ) ~ ' e +  . . .  ] (4.3) 
� 8 9  + ) , , ~  1 + 3 ( 2 + ~ / ~ ) 2  

For large m these points accumulate near no(m, +)  = (~o3v/3 - 1)/2. Now 
we have to remember that originally n was a discrete integral variable. 
Replacing this discrete variable by a continuous one and using the method of 
stationary phase makes sense only if n is large and, what is more important in 
this context, if the points of stationary phase are separated from each other by 
distances large compared to unity. Accordingly, we have to limit m to those 
values that ensure no + 1/2/> oJ3V'3/2 + 1, that is to 

m ~< In oJ/2~r + 0.09 (4.4) 

To take into account contributions with larger m would mean to take terms 
comparable in magnitude to those already neglected by the very use of the 
WKB approximation and the method of stationary phase. The meaning of the 
limitation (4.4) is that the concept of rays is applicable only as far as neighbor- 
ing rays have a distance larger than the wavelength. 

5. IMAGE OF A STAR DUE TO THE MAIN RAYS 
(0, - )  AND (0, +)  

As will be shown later, the shape of a star's image is mainly determined 
by the two rays (0, - )  and (0, +),  i.e., by the interference pattern of the two 
associated waves. 
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r ~  "z >>1,0"<<1 
r'O "z ~- 1, "~" <<1 
r ~'z<< 1, uJ v'27 G< I  

Fig. 3. Regions with different character of a star's image. 

For  v ~ << 1 these two rays pass the black hole at a very large distance; 
therefore,  the calculations of  I are applicable in that  case. The main results 
listed there are (see Figure 3) as follows. 

(1) For  rv ~z << 1 there is a focal beam of  extreme intensity. Its diameter  
is about  2(rA/~r) 1/2, and the magnitude of  the Poynting vector is enlarged up to 
a factor ~roa. An observer located in this focal beam will see an undeflected 
bright star. 

(2) For  rv "2 ~ 1 an observer will see a double image o f  unequal  bright- 
ness, the undeflected par t  being the brighter one. 

(3) For  rv ~2 >> 1, v ~ << 1 the observer will see a double image o f  equal 
brightness. As in (2), the deflection angle is A z = -- Sp/S~ = 4/r~, the peak at 
A 1 ~ 0 being nearly undeflected. 

We now will deal with the region rv ~2 >> I, 0.01 ~< v ~ ~< 7r/2. Here the 
assumption that  the star is a black hole is essential, because the ray (0, + )  
would be absorbed at the surface of  the star. For  the two main rays we get 
f rom (3.1) and (2.4)-(2.5) 

(1 +cos ) l 
a ( 0 , - )  = r s i n v  ~ 1 + 2 7 s i - ~  J (5.1) 

S"(O, - )  = 1~oar cos t~ 

and 

t~ ~ 2 a( O, + ) d r  _ 
o~O,+~ [ r~ - a2( O, + ) r ( r  - 1)] 1/2 ~r 

(5.2) 
S"(0, + )  - 2 O fr ~ a(0, + ) dr 

oa aa(0, + )  0<o,+)[r' - a2(0, + ) r ( r -  1)] 1/2 

No  simple approximation of  these elliptic integrals is available for v ~ ~ 1 ; we 
have to evaluate them numerically to get a(0, + )  and S ' (0 ,  + )  in terms of  t~. 

The time-averaged components  of  the Poynting vector prove to be 

1 { l + c o s v ~  [a (0 ,+)s inv~] l /2  } (5.3) 
So : sin a + / T )  J cos [ s (0 ,  - )  - s(o, +)] 
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TABLE I. The deflection angles A1 and A2 as 
functions of r and ~9 

r0 0 rA1 rA2 

ro >> 1 2/ro -0 .74 4/0 = 2ro 
16.77 7.27 ~ - 0.74 32.33 
8.248 15.79 ~ -0.695 15.12 
4.090 37.20 ~ -0.596 6.558 
2.786 65.49 ~ - 0.498 4.608 

Because o f  

[S(0, - )  - S(0,  + ) ]  ~ ~ [S(0, - )  - S(m, +)] z - r sin ~ (5.4) 
~p 

the deflection angle A = - a r c t a n  $'/S~ = - 2 S  D oscillates rap id ly  over  the 
ape r tu re  o f  a telescope,  and  therefore  the image o f  the  s tar  is de te rmined  
essential ly by  the angular  d is t r ibut ion  dI/dA of  the intensi ty  L F r o m  (5.3) w e  

get  

dl r sin o ~ [dSo~ -1 r d~b 1 (5.5) 
d-S = 4 \ ~p ] d~b ~ 2w . a / ( A  z _ A)(A - A1) 

wi th  

2 /a(O, +) sin 
- A 1  = 

A1 + A2 = 
2 1  + c o s ~  
r sin 

(5.6) 

Some values o f  A2 + A1 are  given in Table  I. Accord ing  to (5.5), an  observer  
will see a double  image  o f  equal  brightness,  i.e., two peaks  o f  (equal)  intensi ty 
at  A1 and  Az and  a weak  br idge in between (see Figure  4). This result  differs 
cons iderab ly  f rom geometr ica l  optics,  which predicts  a ma in  image  a t  
(A1 + A2)/2 and a weak  secondary  image (intensity ~ r -2 )  a t  A = --t~. 

, -  / 
I 

41 
p ,  

A 2 

Fig. 4. Image of a star in the region ro ~2 >> 1. (a) Main rays only; (b) main + secondary 
rays. 
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6. CONTRIBUTIONS F R O M  THE SECONDARY RAYS 
(m, + ) , m  > 1 

As already mentioned in Section 4, for m I> 1 the points of stationary 
phase and the phase and its second derivative at these points are approxi- 
mately given by 

oJ3V~ I 2 18 2 e_(2.,+ ~ ) ~  ] 
no(m, + ) + � 8 9  1 + 3  ( 2 + V 3 )  2 

oJ3V3 [(2m + 1)rr + v q] - mrr + o)r (6.1) S(m, +_) ~, ~ 

+ oJ In r + const 

1 (2 + x/3) 2 e<2,,+1~ ~ 
oJS"(m, + ) ,,~ ~/---~ 182 

We see that the main m-dependent part of the phase S(m, + ) originates from 
the revolution in the circle r = 3/2, which has the optical path length 3X/3~r. 

If  we put (6.1) into the machinery of the formulas (2.7), (2.8), (3.6), and 
(3.8) and work it out, we find the following. 

(1) In (3.6) the amplitudes attached to the rays (m, +)  are smaller than 
those attached to (0, - )  by a factor of order r -1 and smaller than the 
amplitudes of(0,  + )  at least by a factor e -~ ~ 0.04. 

(2) The amplitudes of two successive rays (m, +)  and (m + 1, +)  
decrease by a factor e -". The contributions of  a ray with m = In o~/2~r are, 
therefore, of order 1/a/-d~ and can be neglected. This supports the reasoning 
of  Section 4, where we limited the number of  rays. 

(3) If  there is an important contribution of  the secondary rays to the 
Poynting vector at all, it should be in the region rv ~2 >> 1. Here 

1 {1 + cos ~ [a(0, +)  sin v~] 1IS 
so = + [ Z-s , T)- J cos IS(0, - )  - s (0 ,  +) l  

+ ~ 2.85e-"~(sin~)lt2(e-Of2cos IS(0, - )  - S(m, +)] 
m m j .  

+ e -~/2 cos [S(0, " )  - S(m, - ) ] ) }  (6.2) 

holds; compare Section 5. Since the coefficients of cos [S(0, - )  - S(m, +_)] 
are small compared to [a(0, + )  sin ~/S"(0, +)]~t2, the zeros of 8Sp/Sp and 
the corresponding peaks of intensity are both in the neighborhood of A~ and 
A2, and no further peaks appear. The image of the star would only change 
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from that of  Figure 4a to that of Figure 4b. The smaller o a becomes, the smaller 
are the changes to be expected. 

(4) On the axis t~ = 0 the secondary rays, too, will give a diffraction peak 
(amplification of  intensity by a factor ~ro~), which is broader than the main 
peak by a factor VT. Nevertheless, this peak is negligible, because the image 
is dominated by the much brighter main peak. 

To summarize, the secondary rays for an incident coherent plane wave 
nowhere give an essential contribution. 

7. INCOHERENT S U P E R P O S m O N  OF RAYS 

The various rays (m, _+ ) have rather different optical path lengths. The 
differences of  their phases S(m, + ) are, in detail, 

S(0, + )  - S(0, - )  ~ 2oJ(2r)l/20 a if rt~2 << 1 

S(O, +) - S(O, - )  ,~ o~ru~2/2 + oJ2 In r~ 2 if rt~ 2 >> 1, t~ << 1 

S(m, +) - S(m, - )  z oJ3V'3v q 

S(m, +)  - S(~,  + ) ~  oJ3X/3zr(m - ~ )  (7.1) 

S(m, +_) - S(O, - )  = co{r(1 - cos o~) + In 8r 2 sin 2 v~/(1 + cos t~) + cos o q 

+ 3 - 6 In (2 + a/3) - ~r/2 + 3X/-J 

x [(m + �89 _ oq/2 - 1 ]} if r~ 2 >> 1 

S(m, +)  - S(O, - )  = o~[ln 16r + 3 - 61n(2 + V~) - ~r/2 

+ 3~/3{(m + �89 + v ~ - 1}] if rt~ 2 << 1 

As all distances are measured in units of the Schwarzschild radius, a phase 
difference o, corresponds to a path difference of one Schwarzschild radius, 
which for a typical star is of order 1 kin. 

If  the coherence distance is smaller than the path differences listed above, 
geometrical optics is applicable. It can easily be shown that in this case 
(superposition of intensities instead of  amplitudes) the results of  the approxi- 
mation procedure presented here fully agree with those of  geometrical optics. 
Near the axis v ~ = 0 rays of equal m always have small path differences, they 
are coherent, and they give the typical diffraction peak at the focal line. 

If  the source emits pulses of light, pulses being propagated along different 
rays suffer a transit-time difference according to the phase differences (7.1). 

8. OBSERVATIONAL C O N S E Q U E N C E S  

In I we have already discussed the image of  a large star. We therefore 
will restrict ourselves to the question of whether there is a possibility of  
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distinguishing a large star from a neutron star or a black hole by means of 
the image it produces. 

As we have shown, in the case of  a coherent incident wave the secondary 
rays give negligible contributions only. The shape of  the image is determined 
by the main rays, and off the axis ~ = 0 a double image is to be seen. But the 
very fact that an observer sees a double image may contain useful informa- 
tion, because a double image can be formed only if the ray (0, + )  is not 
absorbed at the surface of the star in question. I f  at a point (r, o ~) a double 
image is detected, we can use (5.1) or Table I to find the corresponding 
value of a(0, + )  = ro(ro/ro - 1) 1/2 and conclude that the (coordinate) radius 
of  the star is smaller than r0. 

I f  the source emits pulses of  light, conclusions can be drawn similarly 
from the existence or nonexistence of the echoes due to the rays (0, + )  and 
(m, _+ ). The time delay of these echoes can be evaluated, too. The probability 
of  detecting the echoes from the secondary rays is rather small, because their 
intensity is smaller than that of  the main signal by a factor 

a(m, +)  O.O04e -t(2~ + l>~'~J 
S"(m, + )r 2 sin ~ r 2 sin v ~ 

for rv q2 >> 1 and 

fo ruq~  0. 
7.2 x 105e-(2m+l)~/r 2 
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